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SUMMARY

A succinct 3D discrete element model, with clumps to resemble the real shapes of granular mate-
rials, is developed. The quaternion method is introduced to transform the motion and force of a clump
between local and global coordinates. The Hertz–Mindlin elastic contact force model, incorporated with
the nonlinear normal viscous force and the Mohr–Coulomb friction law, is used to describe the inter-
actions between particles. The proposed discrete element model is used to simulate direct shear tests
of the irregular limestone rubbles. The simulation results of vertical displacements and shear stresses
with a mixture of clumps are compared well with that of laboratory tests. The bulk friction coef-
ficients are calculated and discussed under different contact friction coefficients and normal stresses.
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1. INTRODUCTION

Direct shear tests have been widely used to investigate the shear strength and dilatancy of granular
materials such as soil, rock and powder. For the numerical simulations of direct shear tests, finite
element method has been adopted together with elastic–plastic or hypoplastic constitutive models
with hardening effect [1, 2]. However, based on the continuum constitutive model, it is difficult to
take properties of granular materials into account such as particle size, particle shape, void ratio
and roughness, which are important parameters in the studies of mechanical behaviors of granular
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materials. In recent years, discrete element method (DEM) has been used in the simulation of
direct shear tests of granular materials and particles have been modeled using 2D disks or 3D
spheres [3, 4].

It is easier to model the interactions between regular shaped particles than those of irregular
ones. However, granular materials have complex configurations naturally. In order to reason-
ably describe the particle arrangement and the dynamics of irregular shaped granular materials,
analytically defined particle shapes, such as elliptical and super-quadric, have been established
accordingly [5, 6]. In addition, clusters formed by bonding or clumps formed by clumping multiple
disks or spheres, offer another effective way to model realistic particles [7–11]. Clustered elements,
created by bonding regular particles without initial overlap, are allowed to break up under large
particle interaction and deformation, and suitable to study crushable materials [7–9]. Clumped
particles are generated by clumping disks or spheres with prescribed initial overlap without gener-
ating interaction force, and all of clumped particles move as one element that will not break
apart [9–11].

Clumping method has been used in the DEM software PFC2D and PFC3D (particle flow code)
developed by Itasca, and successfully applied in rock engineering [9]. However, there equations
of motion are calculated in the global coordinates. The moments of inertia of clumps need to
be updated in the global coordinates at each time step, which results in overelaborate calculating
procedures. Because the clump is treated as a rigid body, its motion can be described by the
translational motion of a point in the clump and the rotational motion of the entire clump [9].
The quaternion method, as an alternative way to define rotations in 3D, has the advantage of low
computational burden and without singularities, and has been widely used in molecular dynamics,
quantum mechanics and rigid body dynamics [12]. So, in the proposed discrete element model
with clumps, the quaternion method is introduced to calculate the transformation of the rotation,
the resultant force and moment acting on a clump between local and global coordinates.

On the other hand, in the DEM simulation of granular materials, the linear viscous–elastic
contact model with Mohr–Coulomb friction law has been widely used. In reality, for most granular
materials, the nonlinear contact force model would better reflect the relationship between the
inter-particle force and the deformation, as proven by experimental and numerical results [13, 14].
Currently, the nonlinear Hertz–Mindlin contact force model has been widely adopted in the DEM
simulation of granular materials. And the nonlinear normal viscous force model has been improved
and verified by experiments [15]. However, the normal viscous force has not been well combined
with the Hertz–Mindlin model. As for the tangential viscous force, there are some nonlinear
models developed, but they have not been verified by experiments. Moreover, the tangential viscous
force has little effect on the dynamics of granular materials and is often ignored in the DEM
simulation [16].

Therefore, the objective of this paper is to develop a succinct 3D DEM model with clumps to
resemble the real irregular shapes of granular materials. A finite partition approach is first used
to calculate the mass, center of mass and moment of inertia of a clump in the local coordinates.
The rotation, the resultant force and moment acting on a clump are then calculated both in the
global and local coordinates, and the quaternion method is introduced to obtain the transformation
matrix between coordinates. The Hertz–Mindlin elastic contact force model, with the incorporation
of the nonlinear normal viscous force and the Mohr–Coulomb friction law, is used to describe
the interactions between particles. Based on the established DEM model, the direct shear tests of
the irregular limestone rubbles are simulated. The numerical and measured results of the vertical
displacements and shear stresses are compared.
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2. DISCRETE ELEMENT MODEL WITH CLUMPS

2.1. Mass and moment of inertia of a clump

A clump is discretized into finite cubes with dimension of �V =�x×�y×�z. For any arbitrary
cube, only when it is inside a sphere, its contribution to the clump will be taken into account.
Therefore, the mass, center of mass and moment of inertia of a clump in the local coordinates are
determined as follows:

M̃ = �
K∑

k=1
�Vk (1)

X̃i = �
∑K

k=1 xk�Vk

M̃
(2)

Ĩi i = �
K∑

k=1
[(X̃ j −xk j )

2�Vk] (3)

where M̃ , X̃i and Ĩii are the estimated mass, center of mass and local moment of inertia of the
clump. � is the particle density and K is the effective number of cubes. �Vk and xk are the volume
and center of mass of cube k. The accuracy of the above estimation largely depends on the size
of the discretized cube. Our results show that when �x=�y=�z=Dmin/20 is set, where Dmin is
the minimum diameter of clumps, the calculations are close to their real values with an accuracy
of 97%.

2.2. Motion of clumps using the quaternion method

For a clump, the global coordinates eG and the local coordinates eB are defined. The origin of the
local one is located at the center of the clump as shown in Figure 1. The relationship of the local
and global coordinates is written as,

eB =A ·eG (4)

eG =AT ·eB (5)

Figure 1. Local and global coordinates in the DEM simulation of clumps.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:978–990
DOI: 10.1002/nag



DISCRETE ELEMENT MODELING OF DIRECT SHEAR TESTS 981

where the transformation matrix A satisfies A−1=AT and can be determined by the quaternion
method. There are four scalars in the quaternion method, that is [17],

Q=(q0,q1,q2,q3) (6)

with the property of

q20 +q21 +q22 +q23 =1 (7)

Thus, the transformation matrix can be rewritten as [17]

A=

⎛
⎜⎜⎝
q20 +q21 −q22 −q23 2(q1q2+q0q3) 2(q1q3−q0q2)

2(q1q2−q0q3) q20 −q21 +q22 −q23 2(q2q3+q0q1)

2(q1q3+q0q2) 2(q2q3−q0q1) q20 −q21 −q22 +q23

⎞
⎟⎟⎠ (8)

The moment components in the local coordinates can be obtained through the transformation
of those in the global coordinates, that is,⎛

⎜⎜⎝
MB

x

MB
y

MB
z

⎞
⎟⎟⎠=A

⎛
⎜⎜⎝
MG

x

MG
y

MG
z

⎞
⎟⎟⎠ (9)

where MB
x , M

B
y and MB

z are the moment components in the local coordinates. MG
x , M

G
y and MG

z
are the moment components in the global coordinates and can be calculated through the contact
force in the DEM simulation.

In the local coordinates, the rotational acceleration of a clump can be determined by [18]

�̇B
x = MB

x

Ĩxx
+
(
Ĩyy− Ĩzz

Ĩzz

)
�B

y�
B
z (10)

�̇B
y = MB

y

Ĩyy
+
(
Ĩzz− Ĩxx

Ĩyy

)
�B
z �B

x (11)

�̇B
z = MB

z

Ĩzz
+
(
Ĩxx− Ĩyy

Ĩzz

)
�B
x �B

y (12)

where �B
x , �B

y and �B
z , �̇B

x , �̇B
y and �̇B

z are rotational velocities and accelerations of the clump in
the local coordinates, respectively.

The quaternion components and the rotational velocities of the clump satisfy the following
equation [18]: ⎛

⎜⎜⎜⎜⎝
q̇0

q̇1

q̇2

q̇3

⎞
⎟⎟⎟⎟⎠= 1

2
W

⎛
⎜⎜⎜⎜⎜⎝

0

�B
x

�B
y

�B
z

⎞
⎟⎟⎟⎟⎟⎠ (13)
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with

W=

⎛
⎜⎜⎜⎜⎝
q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎟⎟⎠ (14)

After the calculation of the local rotational velocities, the global rotational velocities can then
be obtained: ⎛

⎜⎜⎝
�G
x

�G
y

�G
z

⎞
⎟⎟⎠=AT

⎛
⎜⎜⎝

�B
x

�B
y

�B
z

⎞
⎟⎟⎠ (15)

With the above transformation between local and global coordinates using the quaternion method,
the equations of motion are integrated using the explicit differential scheme involving a time step
of �t .

Initially, the positions and orientations of particles are given in global coordinates and global
Euler angles, and the quaternion has the relationship with Euler angles as follows:

q(0)
0 = cos

�

2
cos

�+�

2

q(0)
1 = sin

�

2
cos

�−�

2

q(0)
2 = sin

�

2
sin

�−�

2

q(0)
3 = cos

�

2
sin

�+�

2

(16)

where �, � and � are the Euler angles. The transformation matrix A(0) is determined with
Equation (8). The translational velocity and rotational velocity of each clump are given randomly
in global coordinates.

At time n�t , the resultant force and moment acting on a clump are (F(n)
G ,M(n)

G ) in global
coordinates, and the moment in local coordinates can be transformed from global coordinates by
Equation (9).

At time (n+1)�t , the translational velocity can be calculated as

V(n+1)
G =V(n)

G + F(n)
G �t

M̃
(17)

where V(n+1)
G and V(n)

G are the translational velocity of a clump in global coordinates at time n�t
and (n+1)�t , respectively.
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The rotational velocity at time (n+1)�t in local coordinates can be calculated using Equations
(10)–(12). The quaternions at (n+1)�t can be determined with Equation (13) by

⎛
⎜⎜⎜⎜⎝
q0

q1

q2

q3

⎞
⎟⎟⎟⎟⎠

(n+1)

=

⎛
⎜⎜⎜⎜⎝
q0

q1

q2

q3

⎞
⎟⎟⎟⎟⎠

(n)

+ �t

2
W(n)

⎛
⎜⎜⎜⎜⎜⎝

0

�B
x

�B
y

�B
z

⎞
⎟⎟⎟⎟⎟⎠

(n)

(18)

The transformation matrix A(n+1) at time (n+1)�t can be calculated with Equation (8), and
the rotational velocity of each clump in global coordinates can be updated by

⎛
⎜⎜⎝

�G
x

�G
y

�G
z

⎞
⎟⎟⎠

(n+1)

=A(n+1)T

⎛
⎜⎜⎝

�B
x

�B
y

�B
z

⎞
⎟⎟⎠

(n+1)

(19)

With the translational velocity and rotational velocity in global coordinates obtained with
Equations (17) and (19), the contact force and moment at time (n+1)�t may be calculated.

2.3. Nonlinear contact force model

The contacts between clumps and a clump and a sphere are contacts of two regular spheres. Thus,
the contact force model of two spheres is used to calculate the contact force between particles.
In the normal direction, the contact force consists of elastic and viscous forces. Based on Hertz’s
theory of the particle–particle contact of two elastic spheres, the normal contact force can be
written as [19]

Fn=Knx
3/2
n + 3

2 AKnx
1/2
n ẋn (20)

Without considering the viscous force in the tangential direction, and with the consideration of
the Mohr–Coulomb friction law, the shear force can be determined as [20]

F∗
s = Ksx

1/2
n xs (21)

Fs =min(F∗
s ,sign(F∗

s )�Fn) (22)

where xn and ẋn are the normal deformation and deformation rate, respectively. xs is the shear
deformation and � is the friction coefficient. A is a material constant depending on Young’s
modulus, viscous coefficients and Poisson ratio of the material and can be determined by the
restitution coefficient of particle collisions at a certain speed [19]. Kn and Ks in the above contact
model can be calculated as [20]

Kn = 4
3 E

∗√R∗ (23)

Ks = 8G∗√R∗ (24)
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where

E∗ = E

2(1−�2)
, G∗ = G

2(2−�)
, G= E

2(1+�)
, R∗ = RARB

RA+RB

E,� and G are Young’s modulus, Poisson ratio and shear modulus of the material. RA and RB
are the radius of two particles in contact.

The maximum time step in the nonlinear DEM can be determined by [21]

tmax= 	Rmin

0.163�+0.8766

√
�

G
(25)

The real time step in the calculation is less than the maximum, and is determined by

dt=
tmax (26)

where 
 is an empirical coefficient. Normally, with higher coordination number (>4), a smaller
time step is set as dt=0.2tmax, and with lower coordination number (<4), dt=0.4tmax [21]. In
this study, we set 
=0.2.

3. SIMULATION OF DIRECT SHEAR TESTS FOR IRREGULAR LIMESTONE RUBBLES
WITH THE PROPOSED DEM

3.1. Laboratory direct shear tests

The direct shear box includes an upper and lower box. The initial gap between the two boxes is
normally set as half of the mean particle diameter. Vertical loads are applied at the top wall of the
upper box and the lower box is sheared horizontally with a constant shear rate. In addition, the
upper box is fixed horizontally and free to move vertically, while the lower box fixed vertically
and free to move horizontally. The vertical displacement and shear stress were measured under
three different normal stresses (100, 200 and 300 kPa).

The mass of 300 particles of limestone rubbles, randomly selected from the specimen, were
measured and found to obey a lognormal distribution,

f (m)= 1

m�
√
2	

exp

(
−1

2

(
lnm−�

�

)2
)

(27)

with the probability distribution parameters �=0.432 and �=−0.117. Figure 2 shows the
measured and fitted probability density distribution of the tested material, and Table I lists the
mechanical properties of the physical material.

3.2. DEM modeling of direct shear tests with clumps

To model the real irregular shapes of the limestone rubbles, four different clumps were constructed
as shown in Figure 3. Overlapping size of any two spheres was randomly distributed in the range of
[0.0,0.5Dmin]. In Figure 3(a), (c) and (d), spheres have the same diameters, while in Figure 3(b),
the diameter of the larger sphere is two times that of the smaller one. The sizes of clumps were
determined by their mass, which in turn can be generated by Monte Carlo method based on the
measured lognormal distribution of the mass of the specimen as shown in Figure 2.
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Figure 2. The probability density distribution of the physical material.

Table I. Mechanical properties of the irregular limestone rubbles.

Parameter Definition Value

M Total mass of the specimen 973.6 g
m Mass of a single particle 0.4–2.0 g
D Diameter of sphere 1.30–2.42mm
� Density 2.545×103 kg/m3

E Young’s modulus 58.54GPa
� Poisson ratio 0.221

If spheres were used here instead, it would be hard to simulate the interlocking between
particles, even for the sand, which has rather simple and regular geometry. Although in this
case the contact friction coefficient could be increased to improve the macroshear characteristics,
simulations showed the results are acceptable when the contact friction coefficient is set as 60 or
80, which far exceeds its real value [22]. Our study tries to use a mixture of clumps presented above
to realize the interlocking between particles so that the shear behavior can be better modeled.

In the DEM simulation, particles were placed randomly in the box. To produce a compacted
assembly initially, the particle size was set as half of its real value, and particles were allowed to
grow slowly until the required size was reached. This radius-expansion scheme is commonly used
in the DEM simulation of granular materials. The external vertical load was then applied on the
top wall of the upper box to obtain an initial equilibrium state. The box was finally sheared with a
given shear rate of U until the critical state was reached. The major parameters used in the DEM
simulation are listed in Table II.

Figure 4 shows the DEM model of the test with clumps resembling the irregular limestone
rubbles. Different colors are used to distinguish different particles.
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Figure 3. Clumps used in the DEM simulation.

Table II. Parameters used in the DEM simulation.

Variables Definition Values

L Length of the shear box 10 cm
B Width of the shear box 10 cm
H1, H2 Height of the upper and lower box 3.71 cm
�p Friction coefficient between particles 0.7
�ws Friction coefficient between particles and side walls of the shear box 0.2
�wb Friction coefficient between particles and the top/bottom wall of the shear box 1.0
U Shear rate in the test 3.0mm/min
Np Number of spheres 2300
Nc Number of clumps 926

Figure 4. The DEM model of the direct shear test with clumps resembling the limestone rubbles.

The normal force acting on the shear band is the sum of the weight of the upper box WB, the
weight of particles inside WP and the external load P . And the shear force can be determined
through the equilibrium in the horizontal direction. Therefore, the normal force FN and the shear
force FS acting on the shear band can be calculated as follows:

FN = P+WP+WB (28)

FS =
Nwall∑
iw=1

(NXiw +SXiw) (29)
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where NXiw is the normal force acting on the left and right side wall of the upper box by inside
particles, and SXiw is the shear force acting on the upper box. The upper box has four side walls
and a top, and the total wall number Nwall=5.

The length and width of the shear box are L and B. The box was sheared with a shear rate
of U . At any time t , the area of the shear band is B(L−Ut). The normal and shear stress in the
shear band can be obtained as

�zz = FN
B(L−Ut)

(30)

�zx = FS
B(L−Ut)

(31)

where �zz and �zx are the normal and shear stress in the shear band. And the bulk friction coefficient
is calculated as

�b= �zx
�zz

= FS
FN

(32)

3.3. Results of laboratory tests and proposed DEM simulations

The vertical displacement z and the shear stress �zx of the laboratory tests and the DEM simulations
are plotted in Figure 5, and they are quite close. Figure 5(a) clearly shows the dilatancy with the
increase of the shear displacement. In particular, under small normal stress, dilatancy is remarkable.
In addition, there exists a downward displacement at the initial period of shearing, that is, the
specimen experienced a contraction. This contraction is usually small (<2mm) and increases with
the increase of the normal stress. This phenomenon indicates the coexistence of rotation and sliding
in sheared granular materials, especially near the shear band. At the beginning of shearing, the
rotation results in a compacted particle system. As the shear displacement increases, the rotation
leads to extensive dilatancy. The contraction-dilatancy is one of the typical characteristics of
granular materials, and has been verified in direct shear tests of other materials [23].

Figure 6 shows the particle system and transmission of the force inside the box in the critical
state of shearing. In Figure 6(b), lines are drawn between centers of two particles in contact and the
width of lines represents the amplitude of the contact force. It clearly shows that the distribution
of contact force is not uniform, and the shear and normal stress are supported mainly along the
direction of the diagonal going from upper right to lower left of the box. This anisotropy of direct
shear tests has been found both in DEM simulation and laboratory tests [3, 24].

With different normal stresses �zz and contact friction coefficients �p between particles, the
bulk friction coefficient �b was calculated with the established DEM model. Figure 7 gives the
simulation results. It shows in Figure 7(a) the bulk friction coefficient decreases with the increase
of the normal stress. This can be explained by Mohr envelope of the shear strength of granular
materials. Figure 7(b) shows that the bulk friction coefficient increases as the contact friction
coefficient �p increases, but with a decreasing increase rate. This is mainly because rotation and
sliding both occur in the shearing process, and the increase of the contact friction coefficient
further stimulates the rolling effect of particles. Currently, studies on the competition mechanism
between sliding friction and rolling resistance are important in improving the accuracy of numerical
simulations of granular dynamics.
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4. CONCLUSIONS

Direct shear tests of the irregular limestone rubbles were simulated by 3D DEM with a mixture
of clumps resembling the real shapes of the material. Clumps were constructed by overlapping
spheres with different numbers, diameters, orientations and overlapping lengths, and provided the
interlocking among particles. The characteristics of direct shear of irregular granular materials
can be modeled well with the developed clumps. The simulation results agreed well with that of
laboratory tests. The simulations also showed that the bulk friction coefficient increases with the
increase of the contact friction coefficient and increases with the decrease of the normal stress.
In addition, the introduction of the quaternion method resulted in relatively simple calculations.
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